A New Loop Algebra and the Corresponding Computing Formula of Constant γ in the Quadratic-Form Identity, as Well as the Generalized Burgers Hierarchy

Huanhe Dong · Xuelei Wang · Ning Zhang

Received: 11 October 2007 / Accepted: 28 November 2007 / Published online: 4 December 2007 © Springer Science+Business Media, LLC 2007

Abstract A new loop algebra containing four arbitrary constants is presented, and the corresponding computing formula of constant γ in the quadratic-form identity is obtained in this paper, which can be reduced to computing formula of constant γ in the trace identity. As application, a new Liouville integrable hierarchy which possess bi-Hamiltonian structure and generalized Burgers hierarchy are derived.

Keywords Loop algebra \cdot Computing formula of constant γ \cdot Quadratic-form identity

1 Introduction

Loop algebra \tilde{A}_1 is used to constructing isospectral problem

$$\begin{cases} \psi_x = U\psi, & U, V \in \tilde{A}_1, \ \psi = (\psi_1, \psi_2)^T, \\ \psi_t = V\psi, & \lambda_t = 0, \end{cases}$$
(1)

whose compatibility condition exhibits a zero-curvature equation

$$U_t - V_x + [U, V] = 0 (2)$$

H. Dong (🖂)

X. Wang

N. Zhang

School of Science, Shandong University of Science and Technology, Qingdao, Shandong 266510, People's Republic of China

School of Information, Shandong University of Science and Technology, Qingdao, Shandong 266510, People's Republic of China e-mail: donghuanhe@126.com

School of Information Science and Engineering, Shandong Agricultural University, Taian 271000, People's Republic of China

and the stationary zero-curvature equation

$$V_x = [U, V]. \tag{3}$$

Some hierarchies, such as AKNS hierarchy, KN hierarchy, BPT hierarchy [1] and so on [4–8], are derived with \tilde{A}_1 by establishing linear isospectral problem. In the following, we consider a general-form Lie algebra.

Set V_s to be an *s*-dimensional linear space with base e_1, e_2, \ldots, e_s , and let

$$a = \sum_{i=1}^{s} a_i e_i = (a_1, a_2, \dots, a_s)^T,$$

$$b = \sum_{i=1}^{s} b_i e_i = (b_1, b_2, \dots, b_s)^T$$

be two elements of V_s and define a commutation operation as

$$[a,b] = \sum_{i,j=1}^{s} a_i b_j [e_i, e_j] = \sum_{i=1}^{s} c_i e_i = c = (c_1, c_2, \dots, c_s)^T.$$
(4)

It is easy to verify that V_s along with (4) becomes a Lie algebra.

A corresponding loop algebra \tilde{V}_s is presented with base and commutation operation respectively as follows

$$e_{i}(m) = e_{i}\lambda^{m}, \quad [e_{i}(m), e_{j}(n)] = [e_{i}, e_{j}]\lambda^{m+n},$$

$$i, j = 1, 2, \dots, s, m, n = 0, \pm 1, \pm 2, \dots.$$
(5)

The linear isospectral problem which is constructed by \tilde{V}_s can be taken as

$$\begin{cases} \psi_x = [U, \psi], & U, V, \psi \in \tilde{V}_s, \\ \psi_t = [V, \psi], & \lambda_t = 0, \end{cases}$$
(6)

from which, the zero curvature equations (2) and (3) are easy to be derived, and we should define rank(U) and rank(V) and let the two arbitrary solutions V_1 and V_2 of (3) with the same rank have a linear relation

$$V_1 = \gamma V_2, \quad \gamma = \text{const.}$$
 (7)

For $a, b \in \tilde{V}_s$, s-order matrix R(b) is determined by

$$[a,b]^T = a^T R(b) \tag{8}$$

and constant matrix $F = (f_{ij})_{s \times s}$, is determined by

$$F = F^{T}, \quad R(b)F = -(R(b)F)^{T}.$$
 (9)

We introduce quadratic-form identity functional

$$\{a, b\} = a^T F b, \quad a, b \in \tilde{V}_s \tag{10}$$

and consider functional

$$W = \{V, U_{\lambda}\} + \{\Lambda, V_{x} - [U, V]\},$$
$$U, V, \Lambda \in \tilde{V}_{s}$$
(11)

which has the following variation constraint conditions

$$\nabla_{\Lambda} W = V_x - [U, V] = 0, \tag{12}$$

$$\nabla_V W = U_\lambda - \Lambda_x + [U, \Lambda] = 0. \tag{13}$$

Then, we obtain

$$[\Lambda, V] - V_{\lambda} = \frac{\gamma}{\lambda} V, \quad \gamma = \text{const.}$$
(14)

Suppose the above conditions hold, the following formula holds:

$$\frac{\delta}{\delta u_i} \{V, U_\lambda\} = \lambda^{-\gamma} \frac{\partial}{\partial \lambda} \left(\lambda^{\gamma} \left\{ V, \frac{\partial U}{\partial u_i} \right\} \right), \quad 1 \le i \le l,$$
(15)

where γ is a constant to be determined. We call (15) the quadratic-form identity. It is worthwhile to mention that constant γ of (14) is the same as that of (15). In order to further discuss matrix R(b) presented in the expression (9), we obtain the following results:

Definition Set V_s to be an *s*-dimensional linear space, and M_s a set of $s \times s$ matrices. Let *R* be a linear operator from V_s to M_s and satisfy

$$R(R^{T}(b)a) = [R(a), R(b)] = R(a)R(b) - R(b)R(a) \quad \forall a, b \in V_{s},$$
(16)

then R is called a commuting operator on V_s . All the commutators on V_s constitute a set denoted by $K(V_s, M_s)$.

 V_s is a Lie algebra with the commuting operation [a, b] if and only if there exists $R \in K(V_s, M_s)$, so that

$$[a, b]^{T} = a^{T} R(b).$$
(17)

Let

$$b = (b_1, b_2, b_3)^T,$$

$$R(b) = \begin{pmatrix} \alpha_1 b_2 + \alpha_2 b_3 & \beta_1 b_2 + \beta_2 b_3 & \gamma_1 b_2 + \gamma_2 b_3 \\ -\alpha_1 b_1 + \alpha_3 b_3 & -\beta_1 b_1 + \beta_3 b_3 & -\gamma_1 b_1 + \gamma_3 b_3 \\ -\alpha_2 b_1 - \alpha_3 b_2 & -\beta_2 b_1 - \beta_3 b_2 & -\gamma_2 b_1 - \gamma_3 b_2 \end{pmatrix},$$
(18)

then $R \in K(V_3, M_3)$ if and only if

$$\begin{cases} \alpha_2 \gamma_1 - \alpha_1 \gamma_2 = \beta_1 \gamma_3 - \beta_3 \gamma_1, \\ \alpha_2 \beta_1 - \alpha_1 \beta_2 = \beta_3 \gamma_2 - \beta_2 \gamma_3, \\ \alpha_3 \beta_1 - \alpha_1 \beta_3 = \alpha_2 \gamma_3 - \alpha_3 \gamma_2, \end{cases}$$
(19)

where α_i , β_j , γ_k are constants, i, j, k = 1, 2, 3.

Consider

$$R^{*}(b) = \begin{pmatrix} c_{1}b_{2} & -c_{2}b_{3} & c_{3}b_{2} \\ -c_{1}b_{1} - c_{4}b_{3} & 0 & -c_{3}b_{1} + c_{1}b_{3} \\ c_{4}b_{2} & c_{2}b_{1} & -c_{1}b_{2} \end{pmatrix},$$
(20)

where $c_1, c_2, c_3, c_4 = \text{const.}, c_1^2 + c_3 c_4 \neq 0$.

It is easy to verify that R^* satisfies (19) and $R^* \in K(V_3, M_3)$. Furthermore, the commuting operation of R^* is concise so that it is easy to be applied. The new loop algebra engendered by R^* , is denoted by \tilde{V}_3^* . And taking

$$F = \begin{pmatrix} -c_2c_3 & 0 & c_1c_2 \\ 0 & c_1^2 + c_3c_4 & 0 \\ c_1c_2 & 0 & c_2c_4 \end{pmatrix},$$
(21)

we are easy to obtain the following results

$$F = F^{T}, \qquad R^{*}(b)F = -(R^{*}(b)F)^{T}$$
 (22)

and the quadratic-form functional

$$\{a, b\} = a^{T} F b = -c_{2}c_{3}a_{1}b_{1} + c_{1}c_{2}a_{3}b_{1} + c_{1}c_{2}a_{1}b_{2} + c_{2}c_{4}a_{3}b_{2} + (c_{1}^{2} + c_{3}c_{4})a_{2}b_{2},$$

$$a, b \in \tilde{V}_{3}^{*}.$$
 (23)

2 Computing Formula of Constant y

In this section, in terms of loop algebra \tilde{V}_3^* , which brought from $R^*(b)$ (20), we obtain the corresponding computing formula of γ in the quadratic-form identity (15). Since constant γ in (15) is the same as that in (14), we start from (14) to solve it. For

$$U = e_0(\lambda) + \sum_{i=1}^{l} e_i(\lambda)u_i, \qquad \{e_0(\lambda), e_i(\lambda), 1 \le i \le l\} \subset \tilde{A}_1,$$

we should define the proper rank number denoted by rank(λ) and rank(u_i) so that

$$\operatorname{rank}(e_0(\lambda)) = \operatorname{rank}(e_i(\lambda)u_i) = \alpha \quad (1 \le i \le l)$$

and simultaneously we call U the same rank, i.e. rank numbers of U is α , denoted by

$$\operatorname{rank}(U) = \operatorname{rank}\left(\frac{d}{dx}\right) = \alpha = \operatorname{const.}$$
 (24)

Suppose that solution of (3) is given by

$$V = \begin{pmatrix} v_1 & v_2 \\ v_3 & -v_1 \end{pmatrix}, \quad v_k = \sum_{m \ge 0} v_{k,m} \lambda^{-m}, \ k = 1, 2, 3$$

and rank $(v_{k,m})$ is defined so that

$$\operatorname{rank}(v_{k,m}\lambda^{-m}) = \xi = \operatorname{const.}, \quad k = 1, 2, 3, \ m \ge 0,$$

then V is called the same rank, denoted by

$$\operatorname{rank}(V) = \operatorname{rank}\left(\frac{d}{dt}\right) = \xi.$$
 (25)

Lemma 1 Suppose that conditions (24, 25, 7) and (12) hold, and

$$V = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \in \tilde{V}_3^*, \quad v_k = \sum_{m \ge 0} v_{k,m} \lambda^{-m},$$
(26)

$$G(V) = -c_2c_3v_1^2 + 2c_1c_2v_1v_3 + c_2c_4v_2^2 + (c_1^2 + c_3c_4)v_2^2,$$

then the following equation holds

$$(G(V))_{\lambda} + \frac{2\gamma}{\lambda}G(V) = 0, \qquad (27)$$

where constant γ in (27) is the same as that in (15).

Proof From the conditions of Lemma 1, we are easy to test that (14) holds and unknown vector $\Lambda \ (\in \tilde{V}_3^*)$ exists, denoted by $\Lambda = (\eta_1, \eta_2, \eta_3)^T$. Turning (14) into equation systems, we read

$$c_1 v_2 \eta_1 - (c_1 v_1 + c_4 v_3) \eta_2 + c_4 v_2 \eta_3 = v_{1\lambda} + \frac{\gamma}{\lambda} v_1, \qquad (28)$$

$$-c_2 v_3 \eta_1 + c_2 v_1 \eta_3 = v_{2\lambda} + \frac{\gamma}{\lambda} v_2,$$
(29)

$$c_3 v_2 \eta_1 + (c_1 v_3 - c_3 v_1) \eta_2 - c_1 v_2 \eta_3 = v_{3\lambda} + \frac{\gamma}{\lambda} v_3.$$
(30)

Let

$$(c_1v_3 - c_3v_1) \times (28) + (c_1v_1 + c_4v_3) \times (30),$$

then

$$v_2(c_1^2 + c_3c_4)(v_3\eta_1 - v_1\eta_3) = \frac{1}{2}(2c_1v_1v_3 + c_4v_3^2 - c_3v_1^2)_{\lambda} + \frac{\gamma}{\lambda}(2c_1v_1v_3 + c_4v_3^2 - c_3v_1^2).$$
 (31)

Also let

$$-v_2(c_1^2+c_3c_4)\times(29),$$

then

$$c_2 v_2 (c_1^2 + c_3 c_4) (v_3 \eta_1 - v_1 \eta_3) = -v_2 (c_1^2 + c_3 c_4) \left(v_{2\lambda} + \frac{\gamma}{\lambda} v_2 \right).$$
(32)

Comparing (31) with (32), we are easy to get the following results: (14) is solvable with respect to Λ if and only if

$$\frac{1}{2}(2c_1v_1v_3 + c_4v_3^2 - c_3v_1^2)_{\lambda} + \frac{\gamma}{\lambda}(2c_1v_1v_3 + c_4v_3^2 - c_3v_1^2) \\ -v_2(c_1^2 + c_3c_4)\left(v_{2\lambda} + \frac{\gamma}{\lambda}v_2\right)$$

D Springer

that is

$$(G(V))_{\lambda} + \frac{2\gamma}{\lambda}G(V) = 0.$$

Remark 1 If G(V) of Lemma 1 is taken as

$$G(V) = \sum_{m \ge 0} g_m \lambda^{-m},$$
(33)

then

$$g_m = \text{const.}, \quad m \ge 0$$

We are easy to obtain $(G(V))_x = 0$ by turning $[U, V] = V_x$ into equation systems and using of transformation which is the same as that in the proof of the lemma. Hence, $g_{mx} = 0$, $g_m = \text{const.}$

Theorem 1 Suppose that conditions (24, 25, 7) and (12), then computing formula of constant γ in the quadratic-form identity is obtained as follows

$$\gamma = -\frac{\lambda}{2} \frac{d}{d\lambda} \ln |G(V)| \quad (G(V) \neq 0).$$
(34)

Proof It is easy to see that G(V) is a unitary function with respect to λ and independent of x. Also from Lemma 1, we know that (41) is convergence, that is $G(V) = g_{2\gamma} \lambda^{-2\gamma}$, therefore

$$\gamma = -\frac{\lambda}{2} \frac{d}{d\lambda} \ln |G(V)| \quad (G(V) \neq 0).$$
⁽³⁵⁾

Remark 2 Theorem 1 is the main result in this paper, where G(V) is the quadraticexpression of V. It is not difficulty to find the highest power λ^{-m_0} in the G(V) so that $\gamma = \frac{m_0}{2}$.

3 Application

Taking the following linear isospectral problem

$$\begin{cases} \psi_x = [U, \psi], & U, V, \ \psi \in \tilde{V}_3^*, \\ \psi_t = [V, \psi], & \lambda_t = 0, \end{cases}$$
(36)

where

$$U = (q, r - \lambda, s)^T$$
, $V = (v_1, v_2, v_3)^T$, $v_k = \sum_{m \ge 0} v_{k,m} \lambda^{-m}$,

$$\operatorname{rank}(\lambda) = \operatorname{rank}(q) = \operatorname{rank}(r) = \operatorname{rank}(\partial) = \operatorname{rank}\left(\frac{d}{dx}\right) = 1.$$
 (37)

Solving

$$V_x = [U, V] = (U^T R^*(V))^T = (R^*(V))^T U,$$
(38)

we give rise to

$$\begin{cases} v_{2,mx} = -qc_2v_{3,m} + sc_2v_{1,m}, \\ c_1v_{1,m+1} + c_4v_{3,m+1} = v_{1,mx} - qc_1v_{2,m} + rc_1v_{1,m} + rc_4v_{3,m} - sc_4v_{2,m}, \\ c_1v_{3,m+1} - c_3v_{1,m+1} = -v_{3,mx} + qc_3v_{2,m} + rc_1v_{3,m} - rc_3v_{1,m} - sc_1v_{2,m}, \\ v_{2,0} = \beta, \quad v_{1,0} = v_{3,0} = 0, \quad v_{2,1} = 0, \quad v_{1,1} = -\beta q, \quad v_{3,1} = -\beta s, \end{cases}$$
(39)

and

$$\operatorname{rank}(v_{k,m}) = m \quad (k = 1, 2, 3, m \ge 0),$$

$$\operatorname{rank}(V) = \operatorname{rank}\left(\frac{d}{dt}\right) = 0.$$
(40)

For arbitrary natural number n, denoting

$$V_{+}^{(n)} = \sum_{m=0}^{n} \begin{pmatrix} v_{1,m} \\ v_{2,m} \\ v_{3,m} \end{pmatrix} \lambda^{n-m}, \quad V_{-}^{(n)} = \lambda^{n} V - V_{+}^{(n)},$$

then (38) can be written as

$$-V_{+x}^{(n)} + [U, V_{+}^{(n)}] = V_{-x}^{(n)} - [U, V_{-}^{(n)}],$$
(41)

the terms on the left-hand side of (41) are of degree ≥ 0 , while the terms on the right-hand side of (41) are of degree ≤ 0 . Therefore,

$$-V_{+x}^{(n)} + [U, V_{+}^{(n)}] = -\left[\begin{pmatrix}1\\0\\0\end{pmatrix}, \begin{pmatrix}v_{1,n+1}\\v_{2,n+1}\\v_{3,n+1}\end{pmatrix}\right] = -\left(\begin{pmatrix}0\\c_{1}v_{1,n+1} + c_{4}v_{3,n+1}\\c_{3}v_{1,n+1} - c_{1}v_{3,n+1})\right).$$

Denoting $V^{(n)} = V^{(n)}_+ + \Delta_n$, $\Delta_n = (0, \delta_n, 0)^T \lambda^{-n}$, the following zero-curvature equation

$$U_t - V_x^{(n)} + [U, V^{(n)}] = 0$$
(42)

gives the new Lax integrable system

$$\begin{cases} q_{in} = c_1 v_{1,n+1} + c_4 v_{3,n+1} - q c_1 1 \delta_n - s c_4 \delta_n, \\ r_t = \delta_{nx}, \\ s_t = -c_1 v_{3,n+1} + c_3 v_{1,n+1} - q c_3 \delta_n + s c_1 \delta_n. \end{cases}$$
(43)

Case 1 Taking s = 0, $\delta_n = \frac{c_3 v_{1,n+1} - c_1 v_{3,n+1}}{q c_3}$, hierarchy (43) was reduced to

$$\begin{cases} q_{tn} = \frac{c_1^2 + c_3 c_4}{q c_2 c_3} v_{2,n+1x}, \\ r_{tn} = \left(\frac{c_3 v_{1,n+1} - c_1 v_{3,n+1}}{q c_3}\right)_x, \end{cases}$$
(44)

$$u_{t} = \begin{pmatrix} q \\ r \end{pmatrix}_{tn} = \begin{pmatrix} \frac{c_{1}^{2} + c_{3}c_{4}}{qc_{2}c_{3}} v_{2,n+1x} \\ (\frac{c_{3}v_{1,n+1} - c_{1}v_{3,n+1}}{qc_{3}})_{\chi} \end{pmatrix}$$
$$= \begin{pmatrix} 0 & \frac{1}{qc_{2}c_{3}} \\ \partial \frac{1}{qc_{2}c_{3}} & 0 \end{pmatrix} \begin{pmatrix} c_{2}(c_{1}v_{3,n+1} - c_{3}v_{1,n+1}) \\ (c_{1}^{2} + c_{3}c_{4})v_{2,n+1} \end{pmatrix} = J \begin{pmatrix} c_{2}(c_{1}v_{3,n+1} - c_{3}v_{1,n+1}) \\ (c_{1}^{2} + c_{3}c_{4})v_{2,n+1} \end{pmatrix}.$$
(45)

🖉 Springer

Substituting $v_{2,0} = \beta = \text{const.} \neq 0$, $v_{2,0} = v_{1,0} = 0$ into (26), we have

$$G(V) = (c_1^2 + c_3 c_4)\beta^2$$

and

$$\gamma = 0. \tag{46}$$

By making use of (15, 23) and (46), a direct calculation gives

$$\frac{\delta}{\delta u_i} - (c_1^2 + c_3 c_4) v_2 = \frac{\partial}{\partial \lambda} \left\{ V, \frac{\partial U}{\partial u_i} \right\}, \quad u_1 = q, u_2 = r,$$

$$\begin{pmatrix} \frac{\delta}{\delta q} \\ \frac{\delta}{\delta r} \end{pmatrix} = -(c_1^2 + c_3 c_4) v_2 = \frac{\partial}{\partial \lambda} \begin{pmatrix} c_2(c_1 v_{3,n+1} - c_3 v_{1,n+1}) \\ (c_1^2 + c_3 c_4) v_{2,n+1} \end{pmatrix}.$$
(47)

Comparing the coefficient of λ^{-n-1} in (47) leads to

$$\frac{\delta}{\delta u} - (c_1^2 + c_3 c_4) v_{2,n+1} = -n \left(\begin{array}{c} c_2(c_1 v_{3,n+1} - c_3 v_{1,n+1}) \\ (c_1^2 + c_3 c_4) v_{2,n+1} \end{array} \right)$$

That is

$$\binom{c_2(c_1v_{3,n+1} - c_3v_{1,n+1})}{(c_1^2 + c_3c_4)v_{2,n+1}} = \frac{\delta H_n}{\delta u}$$

where

$$H_n = \frac{c_1^2 + c_3 c_4}{n} v_{2,n+1} \quad (n \ge 1, c_2 \ne 0, c_1^2 + c_3 c_4 \ne 0).$$
(48)

Therefore, (45) can be written as

$$u_t = \begin{pmatrix} q \\ r \end{pmatrix}_t = J \frac{\delta H_{n+1}}{\delta u}.$$
(49)

From (39), an operator L meets

$$\begin{pmatrix} c_2(c_1v_{3,n+1}-c_3v_{1,n+1})\\ (c_1^2+c_3c_4)v_{2,n+1} \end{pmatrix} = L \begin{pmatrix} c_2(c_1v_{3,n}-c_3v_{1,n})\\ (c_1^2+c_3c_4)v_{2,n} \end{pmatrix},$$

where

$$L = \frac{1}{c_1^2 + c_3 c_4} \begin{pmatrix} (c_1^2 + c_3 c_4)r & qc_2 c_3 + \partial \frac{1}{q} \\ (c_1^2 + c_3 c_4)\partial^{-1}q\partial & -(c_1^2 + c_3 c_4)\partial^{-1}r\partial \end{pmatrix}.$$
 (50)

We observe that

$$JL = L^*J. \tag{51}$$

Hence, (45) can be written again as

$$u_t = \begin{pmatrix} q \\ r \end{pmatrix}_t = J \frac{\delta H_{n+1}}{\delta u} = J L^n \begin{pmatrix} c_2 c_3 \beta q \\ 0 \end{pmatrix} \quad (n \ge 0).$$
 (52)

D Springer

From (51), it is not difficulty to verify that Hamiltonian functions H_l $(l \ge 1)$ in (52) are involutive each other and each H_l $(l \ge 1)$ is the common conserved density of (52). Therefore, the hierarchy (52) is a Liouville integrable hierarchy. Furthermore, hierarchy (54) was reduced to Burgers hierarchy [2] when taking $c_1 = 0$, $c_2 = c_3 = c_4 = 1$. Hence, (52) is a new integrable hierarchy, we call it generalized Burgers hierarchy. Especially, when n = 2, hierarchy (52) was reduced

$$q_t = -\beta \left(rq_x + (qr)_x - \frac{q_{xx}}{q} - \frac{r_x}{q} \right),$$
$$q_t = -\beta \left(r^2 - \frac{1}{2}q^2 + \frac{q_{xx}}{q} + \frac{r_x}{q} \right)_x.$$

Let q = 1, $\beta = -1$, we obtained well-known equations

$$r_t = r_{xx} + 2rr_x.$$

Case 2 Taking r = 0, $\delta_n = 0$, hierarchy (43) was reduced to

$$\begin{cases} q_{tn} = c_1 v_{1,n+1} + c_4 v_{3,n+1}, \\ s_{tn} = -c_1 v_{3,n+1} + c_3 v_{1,n+1}, \end{cases}$$
(53)

$$u_{t} = \begin{pmatrix} q \\ s \end{pmatrix}_{in} = \begin{pmatrix} c_{1}v_{1,n+1} + c_{4}v_{3,n+1} \\ -c_{1}v_{3,n+1} + c_{3}v_{1,n+1} \end{pmatrix}$$
$$= \begin{pmatrix} 0 & \frac{1}{c_{2}} \\ -\frac{1}{c_{2}} & 0 \end{pmatrix} \begin{pmatrix} c_{2}(c_{1}v_{3,n+1} - c_{3}v_{1,n+1}) \\ c_{2}(c_{4}v_{3,n+1} + c_{1}v_{1,n+1}) \end{pmatrix} = J \begin{pmatrix} c_{2}(c_{1}v_{3,n+1} - c_{3}v_{1,n+1}) \\ c_{2}(c_{4}v_{3,n+1} + c_{1}v_{1,n+1}) \end{pmatrix}.$$
(54)

Substituting $v_{2,0} = \beta = \text{const.} \neq 0$, $v_{2,0} = v_{1,0} = 0$ into (26), we have

$$G(V) = (c_1^2 + c_3 c_4)\beta^2$$

and

$$\gamma = 0. \tag{55}$$

By making use of (15, 23) and (55), a direct calculation gives

$$\frac{\delta}{\delta u_i} - (c_1^2 + c_3 c_4) v_2 = \frac{\partial}{\partial \lambda} \left\{ V, \frac{\partial U}{\partial u_i} \right\}, \quad u_1 = q, u_2 = r,$$

$$\begin{pmatrix} \frac{\delta}{\delta q} \\ \frac{\delta}{\delta s} \end{pmatrix} - (c_1^2 + c_3 c_4) v_2 = \frac{\partial}{\partial \lambda} \begin{pmatrix} c_2(c_1 v_{3,n+1} - c_3 v_{1,n+1}) \\ c_2(c_4 v_{3,n+1} + c_1 v_{1,n+1}) \end{pmatrix}.$$
(56)

Comparing the coefficient of λ^{-n-1} in (56) leads to

$$\frac{\delta}{\delta u} - (c_1^2 + c_3 c_4) v_{2,n+1} = -n \left(\frac{c_2(c_1 v_{3,n+1} - c_3 v_{1,n+1})}{c_2(c_4 v_{3,n+1} + c_1 v_{1,n+1})} \right).$$

That is

$$\binom{c_2(c_1v_{3,n+1}-c_3v_{1,n+1})}{c_2(c_4v_{3,n+1}+c_1v_{1,n+1})} = \frac{\delta H_n}{\delta u},$$

where

$$H_n = \frac{c_1^2 + c_3 c_4}{n c_2} v_{2,n+1} \quad (n \ge 1, c_2 \ne 0, c_1^2 + c_3 c_4 \ne 0).$$
(57)

Therefore, (54) can be written as

$$u_t = \begin{pmatrix} q \\ s \end{pmatrix}_t = J \frac{\delta H_{n+1}}{\delta u}.$$
(58)

From (39), an operator L meets

$$\begin{pmatrix} c_1v_{3,n+1}-c_3v_{1,n+1}\\ c_4v_{3,n+1}+c_1v_{1,n+1} \end{pmatrix} = L \begin{pmatrix} c_1v_{3,n}-c_3v_{1,n}\\ c_4v_{3,n}+c_1v_{1,n} \end{pmatrix},$$

where

$$L = \frac{1}{c_1^2 + c_3 c_4} \times \begin{pmatrix} -c_1 \partial - c_2 (qc_3 - sc_1) \partial^{-1} (qc_1 + sc_4) & -c_3 \partial - c_2 (qc_3 - sc_1) \partial^{-1} (qc_3 - sc_1) \\ -c_4 \partial + c_2 (qc_1 + sc_4) \partial^{-1} (qc_1 + sc_4) & c_1 \partial + c_2 (qc_1 + sc_4) \partial^{-1} (qc_3 - sc_1) \end{pmatrix}.$$
(59)

We observe that

$$JL = L^*J. ag{60}$$

Hence, (54) can be written again as

$$u_t = \begin{pmatrix} q \\ r \end{pmatrix}_t = J \frac{\delta H_{n+1}}{\delta u} = J L^n \begin{pmatrix} \beta(c_3 q - c_1 s) \\ -\beta(c_1 q + c_4 s) \end{pmatrix} \quad (n \ge 0).$$
(61)

From (60), it is not difficulty to verify that Hamiltonian functions H_l $(l \ge 1)$ in (61) are involutive each other and each H_l $(l \ge 1)$ is the common conserved density of (61). Therefore, the hierarchy (61) is a Liouville integrable hierarchy. When taking $c_1 = 0$, c - 2 = -1, $c_3 = c_4 = 1$. Furthermore, hierarchy (61) can be reads

$$u_{t} = \begin{pmatrix} q \\ r \end{pmatrix}_{t} = J \frac{\delta H_{n}}{\delta u} = JK \frac{\delta H_{n-1}}{\delta u},$$

$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad L = \begin{pmatrix} q \partial^{-1}s & q \partial^{-1}q - \partial \\ s \partial^{-1}s - \partial & s \partial^{-1}q \end{pmatrix},$$

$$K = JL = \begin{pmatrix} s \partial^{-1}s - \partial & s \partial^{-1}q \\ -q \partial^{-1}s & -q \partial^{-1}q + \partial \end{pmatrix},$$
(62)

K, *J* are Hamiltonian operator, $\alpha J + \gamma K$ (α, γ are constants) is also Hamiltonian operator, so hierarchy (62) has bi-Hamiltonian structure.

References

 Tu, G.: A hierarchy of new integrable systems and its Hamiltonian structure. Sci. Sin. Ser. A 12, 1243– 1252 (1988)

- Tu, G.: The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J. Math. Phys. 30(2), 330–338 (1989)
- Tu, G.: On Liouville integrability of zero-curvature equations and the Yang hierarchy. J. Phys. A: Math. Gen. 22, 2375–2392 (1989)
- Guo, F., Zhang, Y.: The quadratic-form identity for constructing the Hamiltonian structure of integrable systems. J. Phys. A 38, 8537–8548 (2005)
- Guo, F., Zhang, Y.: A type of expanding integrable model of the AKNS hierarchy. Acta Phys. Sin. 51, 951–954 (2002)
- Guo, F., Zhang, Y.: A new loop algebra and a corresponding integrable hierarchy as well, as its integrable coupling. J. Math. Phys. 44, 5793–5803 (2003)
- Guo, F., Zhang, Y.: A unified expressing model of the AKNS hierarchy and the KN hierarchy, as well as its integrable coupling system. Chaos Solitons Fractals 5, 1207–1216 (2004)
- Guo, F., Zhang, Y.: Expansion of the Lie algebra and its application. Chaos Solitons Fractals 4, 1048–1055 (2006)